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Abstract

The main purpose of this paper is to present some new, null-results
related to the multiplicative persistence of numbers in base 10. A sec-
ondary purpose is to introduce to the näıve, mathemaically unsophis-
ticated reader, the main ideas behind the strategy used for searching
for numbers with high multiplicative persistence.1

1 Introduction

Multiply together all the digits of a positive integer, n. Using the result,
repeat the digit-multiplication process to obtain a new result. Continue
until a single digit result is obtained. The number of steps, p, that it takes
for n to be changed to the single digit end-point, is called the multiplicative
persistence of n (Sloane, 1973).

The multiplicative persistence of an integer depends upon the base in
which the integer is expressed.

2 Notation

I use the following notation to indicate that the digits of n0 have been multi-

plied together (step 1, indicated as
1−→ ) to obtain n1, and that the process

has been repeated through steps 2 . . . p until the single digit result np is
obtained:

n0
1−→ n1

2−→ . . .
p−1−→ np−1

p−→ np.

1This paper is released under the Creative Commons Attribution 2.5 Australia (CC
BY 2.5) license and should be cited as Diamond, M. R. (2011). Multiplicative persistence
base 10: some new null results. JoOUS, 3, 1–10.
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3 Examples

Base 10

Commencing with the positive integer 3673, one proceeds as follows:

3673
1−→ 3× 6× 7× 3 = 378

378
2−→ 3× 7× 8 = 168

168
3−→ 1× 6× 8 = 48

48
4−→ 4× 8 = 32

32
5−→ 3× 2 = 6.

The multiplicative persistence of 3673 is 5 because a single-digit result is
reached after 5 steps.

Base 7

Commencing with the positive integer 320, which is represented in base 7 as
6357, one proceeds as follows:

6357
1−→ 6× 3× 5 = 1567

1567
2−→ 1× 5× 6 = 427

427
3−→ 4× 2 = 117

117
4−→ 1× 1 = 17.

The multiplicative persistence of 6357 is 4 because a single-digit result is
reached after 4 steps.

4 Well known results

The multiplicative persistence of the first 100 positive integers is shown in
Table 1 and the smallest integers with persistence from 1 to 11 are shown in
Table 2. There are numerous entries relating to multiplicative persistence in
the On-Line Encyclopedia of Integer Sequences (OEIS). Table 1 in this paper
is the same as sequence A031346 at OEIS; Table 2 is the same as sequence
A003001.

It is conjectured that there is no base-10 number with persistence greater
than 11. However, no proof exists of the correctness of the conjecture (if

2

http://oeis.org
http://oeis.org/A031346
http://oeis.org/A003001


n p n p n p n p

1 0 26 2 51 1 76 2
2 0 27 2 52 2 77 4
3 0 28 2 53 2 78 3
4 0 29 2 54 2 79 3
5 0 30 1 55 3 80 1
6 0 31 1 56 2 81 1
7 0 32 1 57 3 82 2
8 0 33 1 58 2 83 2
9 0 34 2 59 3 84 2

10 1 35 2 60 1 85 2
11 1 36 2 61 1 86 3
12 1 37 2 62 2 87 3
13 1 38 2 63 2 88 3
14 1 39 3 64 2 89 3
15 1 40 1 65 2 90 1
16 1 41 1 66 3 91 1
17 1 42 1 67 2 92 2
18 1 43 2 68 3 93 3
19 1 44 2 69 3 94 3
20 1 45 2 70 1 95 3
21 1 46 2 71 1 96 3
22 1 47 3 72 2 97 3
23 1 48 2 73 2 98 3
24 1 49 3 74 3 99 2
25 2 50 1 75 3 100 1

Table 1: The multiplicative persistence p of the positive integers
1 ≤ n ≤ 100.
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p n 2 ↑ 3 ↑ 5 ↑ 7 ↑
1 10
2 25 1 1
3 39 3
4 77 2
5 679 1 3 1
6 6788 7 1 1
7 68889 10 3
8 2677889 8 3 2
9 26888999 11 7

10 3778888999 12 7 2
11 277777788888899 19 4 6

Table 2: The table shows the multiplicative persistence p of the pos-
itive integers 1 ≤ n ≤ 100. The columns headed 2 ↑, 3 ↑,
5 ↑, 7 ↑ are explained in section 1 and indicate the fre-
quency of the prime factors 2, 3, 5 and 7 in the decimal
digits of n. For example, the individual digits of the num-
ber 679, shown in row five of the table, can be written as
the product of primes as follows. (2 × 3) 7 (3 × 3). In
that representation, the number 2 appears once (as shown
in the column 2 ↑), 3 appears 3 times (as shown in the
column 3 ↑), and 7 appears once (as shown in the column
7 ↑).
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there were, we’d call it a theorem!) and occassionally new results about the
search for a high persistence number are published.

5 Searching for high persistence numbers

A näıve approach to searching for integers with high persistence—that is,
integers with a persistence greater than 11—is to determine the persistence
of successive integers beginning with the number 1. A little bit of even trivial
analysis, however, shows that the search can be improved dramatically. The
easiest way to highlight the improvements that can be made is to begin with
a few very simple observations and very elementary results from number
theory.

5.1 Avoiding the digit 0

It is obvious that one not waste time checking any integer that contains the
digit zero (0) since the product of the digits will produce a single digit after

just one step. Example: 4709
1−→ 4× 7× 0× 9 = 0.

5.2 Avoiding the digit 1

Consider the fact that if a number contains the digit 1 and has a multi-
plicative persistence of p, then there must be a smaller integer that also has
persistence p. For example, if the digits of the integer are d1d2d3 . . . 1 . . . dn
(with the digit 1 possibly appearing in the first or last place rather than in
the middle as shown here) then when we multiply the digits together we will
obtain d1 × d2 × · · · × 1× · · · × dn. But we would get the same result if we
simply omitted the digit 1 wherever it appears.

Example: 911311111
1−→ 27

2−→ 14
3−→ 4, which is the same sequence as for

the much smaller number 93
1−→ 27

2−→ 14
3−→ 4.

Conclusion: We need only search for high persistence numbers amongst
those integers that do not contain the digit 1.

5.3 Increasing digits

If two different integers have identical digits (e.g., 329, 932) then they will
clearly have the same multiplicative persistence because their digit products
will converge at the first step.

Example: 329
1−→ 54

2−→ 20
3−→ 0 and 932

1−→ 54
2−→ 20

3−→ 0
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Amongst all the integers with any given set of decimal digits (allowing
for repeating digits), the integer that has the digits in ascending order will
be the smallest.

Example: 3447 is smaller than any of 3474, 3744, 4347, 4374, 4437, 4473,
4734, 4743, 7344, 7434, or 7443. Conclusion: We need only search for high
persistence numbers amongst those integers that have their digits in ascend-
ing order.

5.4 Representing digits as prime factors

Although we could limit our search for high-persistence numbers to only
those numbers that

• did not contain either of the digits 0 or 1, and

• had digits that were in ascending order

there is one further significant simplification that can be made in the search-
ing method.

Note that 479
1−→ 252

2−→ 20
3−→ 0 and 667

1−→ 252
2−→ 20

3−→ 0 both
have a multiplicative persistence of 3. Note also that the digit products of
the two numbers are identical (equal to 252) after step 1. The reason that
the first step results are identical is that the prime-factorization of the digits
of the two numbers 479 and 667 (rather than the prime factorization of the
numbers themselves) is identical.

Rather than wasting time either (a) checking integers that have the same
digit factorization as an integer that has already been checked, or (b) deter-
mining the prime factorization of the digits of the integers we are testing, it
is easier simply to check the multiplicative persistence of integers that are
formed only from prime digits. Neither 479 nor 667 would be checked in such
a search; instead we would determine the persistence of the number that has
the prime factorization of the digits of those two numbers ‘spelled out’ in its
individual digits—namely, 22337. If our search leads us to the discovery that
the number

22222222222222222223333777777

is the smallest with a multiplicative persistence of 11 amongst those that
we have checked, then it is a simple matter to convert that number to the
smallest number with a persistence of 11 by ‘packing’ the prime digits of the
original number into as few digits as possible.

The algorithm for the packing is simplicity itself.
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d1 d2 d3 2 ↑ 3 ↑ 7 ↑
digits 4 7 9

factorization 2× 2 7 3× 3 2 2 1

digits 6 6 7
factorization 2× 3 2× 3 7 2 2 1

Table 3: On the rows labelled ‘digits’, the digits (d1, d2, d3) of each
of the two integers 479 and 667 are shown. Below them ap-
pears the prime factorization of those digits. The columns
labelled 2 ↑, 3 ↑, and 7 ↑ show the frequency of occur-
rence of each of the prime numbers 2, 3 and 7 in the prime
factorization of the digits. The important connexion be-
tween the various columns is that the product of the digits
of 479 is equal to the product of the digits of 667 and
is also equal to the product of the digits of the number

22337
1−→ 22 × 32 × 71 = 252 where the exponents on 2,

3, and 7 correspond to the values shown in the columns
labelled 2 ↑, 3 ↑, and 7 ↑.

• Replace any three 2s with 8
22222222222222222223333777777 888888233337777777

• Replace any two 3s with 9
888888233337777777 8888882997777777

• Replace any 2 and 3 with 6—a rule that has no effect in the current
instance

• Replace any two 2s with 4—another rule that has no effect in the
current instance

• Sort the digits of the result into ascending order
8888882997777777 277 777 788 888 899.

Note that the digits 5 and 7 are left untouched.

5.5 Avoiding 2–5 combinations

The final rule for simplifying our search is just a combination of two previous
rules.

If the prime factorization of the digits of an integer contains both the
factor 2 and the factor 5, then the product of the digits will contain a factor
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of 10 and hence the product of the digits will end with a zero. When the
digits of that product are multiplied together, the result will be zero. In other
words, if the prime factorization of the digits of an integer contains both the
factor 2 and the factor 5 then it will have a multiplicative persistence of
exactly 2.

Since (by the simplification rule in section 5.4) we know to check only
numbers with prime digits, we avoid integers whose digits include both a 2
and a 5.

6 Computer code

It is very easy to determine the persistence of a number using MATHE-

MATICA. In the code shown below the function digitProduct is used to
calculate the product of the digits of integer n. The function persistence

applies the function digitProduct to an integer n and to each successive
digit product until a single digit (i.e., an answer ≤ 9) is produced.

digitProduct[n_] := Times @@ IntegerDigits[n]

persistence[n_] :=

Length[NestWhileList[digitProduct, n, (# > 9) &]] - 1

The two functions are easily adapted to calculations in base b as follows:

digitProduct[n_, b_] := Times @@ IntegerDigits[n, b]

persistence[n_, b_] := Length[

NestWhileList[digitProduct[#, b] &, n, (# > (b - 1)) &]

] - 1

I imagine that a very much faster program could be coded in C using
the GNU Multiple Precision Arithmetic Library (GNU GMP) but I have
not tried it. My cursory look at GMP suggested that one would need to
use one of the library routines to convert each integer to a string in order
to get the digit by digit representation, before using the the high-precision
multiplication routines to calculate the digit product.

7 Summary of results

7.1 Background

In 2001, Phil Carmody reported that he had determined the persistence of
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• all those integers that can be expressed as 2k × 3l × 7m where 0 ≤
k + l + m ≤ 775, and

• all those integers that can be expressed as 3k × 5l × 7m where 0 ≤
k + l + m ≤ 775.

Put another way, he checked the persistence of all the numbers that can be
written as the digit sequence 2k2k−1 . . . 213l3l−1 . . . 317m7m−1 . . . 7271 with the
same bounds on k, l, and m as above.

7.2 New (null) results

I used MATHEMATICA to replicate and extend Carmody’s results. I deter-
mined the persistence of:

• all those numbers that can be expressed as 2k3l7m where 0 ≤ k ≤
1000, 0 ≤ l ≤ 1000, 0 ≤ m ≤ 1000, and

• all those numbers that can be expressed as 3k5l7m where 0 ≤ k ≤
1000, 0 ≤ l ≤ 1000, 0 ≤ m ≤ 1000.

Note that my approach to the bounds is different from that of Carmody.
The MATHEMATICA program that I used consisted, in essence, of just

two statements, namely:

persistence237 = Flatten[

Table[

persistence[2^n2 * 3^n3 * 7^n7],

{n2, 0, 1000}, {n3, 0, 1000}, {n7, 0, 1000}

]

]

and

persistence357 = Flatten[

Table[

persistence[3^n3 * 5^n5 * 7^n7],

{n3, 0, 1000}, {n5, 0, 1000}, {n7, 0, 1000}

]

]

The function persistence is defined in section 6.
My main result is the null result. None of the integers that I tested had

a multiplicative persistence ≥ 10 other than the two that were documented
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by Carmody (2001), namely 2432075 and 2193476. The result is equivalent to
saying that I found no previously undiscovered integer with persistence ≥ 11
amongst all the numbers consisting of strings of up to one thousand 2s, one
thousand 3s, and one thousand 7s, or strings of up to one thousand 3s, one
thousand 5s, and one thousand 7s.

Other results

Clearly any integer constructed in the way described in the preceding part
of this paper—namely an integer consisting only of instances of the digits
2, 3, and 7, or alternatively of instances of the digits 3, 5, and 7—has a
multiplicative persistence of at least 2. The first step in the trajectory of
such a number is guaranteed to be non-zero, in virtue of the starting integer
containing no zero digits, and at least one further step is needed (taking the
multiplicative persistence to at least 2) before a single-digit result might be
obtained.

Almost all of the 1 000 000 000 numbers that I tested (products of powers
of 2, 3, and 7, and products of powers of 3, 5, and 7) had a persistence of 2.
Put another way, most numbers represented by strings of up to one thousand
2s, one thousand 3s, and one thousand 7s, or by strings of up to one thousand
3s, one thousand 5s, and one thousand 7s, have persistence 3. An ASCII file
of the complete results (omitting those power products with persistence 2)
is available for download. The file is surprisingly small.

8 Trivia

The largest number with a persistence ≥ 1 in the space that I searched was
2253227728, with a multiplicative persistence of 2. That, in turn, indicates
that the the 280 digit number 728 . . . 713227 . . . 31225 . . . 21 has a persistence of
3.
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